
Cloudera Fast Forward

Meta-Learning
FF15 · September 2020

This is an applied research report by Cloudera Fast Forward. We write reports
about emerging technologies. Read our full report on meta-learning below or
download the PDF. Our example code for applying meta-learning to an image
dataset is also available.

https://www.cloudera.com/products/fast-forward-labs-research.html
https://www.cloudera.com/products/fast-forward-labs-research.html
file:///FF15-Meta-Learning-Cloudera_Fast_Forward.pdf
https://github.com/fastforwardlabs/learning-to-learn

In early spring of 2019, we researched approaches that would allow a machine
learning practitioner to perform supervised learning with only a limited number
of examples available during training. This search led us to a new paradigm:
meta-learning, in which an algorithm not only learns from a handful of
examples, but also learns to classify novel classes during model inference. We
decided to focus our research report—Learning with Limited Labeled Data—on
active learning for deep neural networks, but we were both intrigued and
fascinated with meta-learning as an emerging capability. This article is an
attempt to throw some light on the great work that’s been done in this area so
far.

Introduction

Why should we care?
Why now?
Framing the problem
Solving the problem

Data set-up
Meta-learning: learning to learn
Model Agnostic Meta-learning (MAML)
Experiment

Dataset
Set-up
Results
Challenges and ways to overcome
Ethics
Moving forward

Author’s note

https://blog.fastforwardlabs.com/2019/04/02/a-guide-to-learning-with-limited-labeled-data.html

Humans have an innate ability to learn new skills quickly. For example, we can
look at one instance of a knife and be able to discriminate all knives from other
cutlery items, like spoons and forks. Our ability to learn new skills and adapt to
new environments quickly (based on only a few experiences or
demonstrations) is not just limited to identifying new objects, learning a new
language, or figuring out how to use a new tool; our capabilities are much more
varied. In contrast, machines—especially deep learning algorithms—typically
learn quite differently. They require vast amounts of data and compute and may
yet struggle to generalize. The reason humans are successful in adapting and
learning quickly is that they leverage knowledge acquired from prior experience
to solve novel tasks. In a similar fashion, meta-learning leverages previous
knowledge acquired from data to solve novel tasks quickly and more efficiently.

Introduction

Figure 1: Humans can learn things quickly

Why should we care?
An experienced ML practitioner might wonder, isn’t this covered by recent (and
much-accoladed) advances in transfer learning? Well, no. Not exactly. First,
supervised learning through deep learning methods requires massive amounts
of labeled training data. These datasets are expensive to create, especially
when one needs to involve a domain expert. While pre-training is beneficial,
these approaches become less effective for domain-specific problems, which
still require large amounts of task-specific labeled data to achieve good
performance.

In addition, certain real world problems have long-tailed and imbalanced data

distributions, which may make it difficult to collect training examples.[1] For
instance, in the case of search engines, perhaps a few keywords are commonly
searched for, whereas a vast majority of keywords are rarely searched for. This
may result in poor performance of models/applications based on long-tailed or
imbalanced data distributions. The same could be true of recommendation
engines; when there are not enough user reviews or ratings for obscure movies
or products, it can hinder model performance.

Figure 2: Long-tailed distributions

Most important, the ability to learn new tasks quickly during model inference is
something that conventional machine learning approaches do not attempt. This
is what makes meta-learning particularly attractive.

Why now?
From a deep learning perspective, meta-learning is particularly exciting and
adoptable for three reasons: the ability to learn from a handful of examples,
learning or adapting to novel tasks quickly, and the capability to build more
generalizable systems. These are also some of the reasons why meta-learning
is successful in applications that require data-efficient approaches; for
example, robots are tasked with learning new skills in the real world, and are
often faced with new environments.

Further, computer vision is one of the major areas in which meta-learning
techniques have been explored to solve few-shot learning problems—including
classification, object detection and segmentation, landmark prediction, video

synthesis, and others.[2](https://arxiv.org/abs/2004.05439) Additionally, meta-
learning has been popular in language modeling tasks, like filling in missing

words[3](https://arxiv.org/abs/1606.04080) and machine translation[4]

(https://arxiv.org/abs/1808.08437), and is also being applied to speech

recognition tasks, like cross-accent adaptation.[5]

(https://arxiv.org/abs/2003.01901)

As with any other machine learning capability that starts to show promise, there
are now libraries and tooling that make meta-learning more accessible. Although
not entirely production-ready, libraries like torch-meta, learn2learn and meta-

Figure 3: Applications - object detection, machine translation, missing

words

https://github.com/tristandeleu/pytorch-meta
https://github.com/learnables/learn2learn
https://github.com/google-research/meta-dataset

datasets help handle data, simplify processes when used with popular deep
learning frameworks, and help document and benchmark performance on
datasets.

The rest of this report, along with its accompanying code, explores meta-
learning, provides insight into how it works, and discusses its implications. We’ll

do this using a simple, yet elegant algorithm—Model Agnostic Meta-Learning[6]

(https://arxiv.org/pdf/1703.03400.pdf)—applied to a few-shot classification
problem, which was proposed a while ago, but continues to provide a good
basis for extension and modification even today.

https://github.com/google-research/meta-dataset

What kind of problems can meta-learning help us solve? One of the most
popular categories is few-shot learning. In a few-shot learning scenario, we
have only a limited number of examples on which to perform supervised
learning, and it is important to learn effectively from them. The ability to do so
could help relieve the data-gathering burden (which at times may not even be
possible).

Let’s say we want to solve a few-shot classification problem, shown in Figure(4)
below. Usually the few-shot classification problem is set up as a N-way k-shot
problem, where N is the number of classes and k is the number of examples in
each class. For example, let’s say we are given an image from each of five
different classes (that is, N=5 and k=1) and we are supposed to classify new
images as belonging to one of these classes. What can we do? How would one
normally model this?

One way to solve the problem would be to train a neural network model from
scratch on the five training images. At a high level, a training step will look
something like Figure(5) below. The neural network model is randomly
initialized and receives an image (or images) as input. It then predicts the
output label(s) based on the initial model parameters. The difference between
the true label(s) and the predicted label(s) is measured by a loss function (for

Framing the problem

Figure 4: A few-shot classification (5-way, 1-shot) problem

example, cross-entropy), which in turn is used to compute the gradients. The
gradients are then used to help calculate new model parameters that best
reduce the difference between the “true” and predicted labels. This entire step
is known as backpropagation. After backpropagation, the optimizer updates the
model parameters for the model, and all of these steps are repeated for the rest
of the images and/or for some number of epochs, until the loss, evaluated on
the train or test data, falls below an acceptable level.

With only five images available for training, chances are that we would likely
overfit and perform poorly on the test images. Adding some regularization or
data augmentation may alleviate this problem to some extent, but it will not
necessarily solve it. The very nature of a few-shot problem makes it hard to
solve, as there is no prior knowledge of the tasks.

Another possible way to solve the problem could be to use a pre-trained
network from another task, and then fine-tune it on the five training images.

Figure 5: A training step in normal training process, adopted from

HuggingFace’s blog post, “From zero to research”

https://medium.com/huggingface/from-zero-to-research-an-introduction-to-meta-learning-8e16e677f78a#0f06

However, depending on the problem, this may not always be feasible, especially
if the task the network was trained on differs substantially.

Data set-up
What meta-learning proposes is to use an end-to-end deep learning algorithm
that can learn a representation better suited for few-shot learning. It is similar
to the pre-trained network approach, except that it learns an initialization that
serves as a good starting point for the handful of training data points. In the
few-shot classification problem discussed, we could leverage training data
that’s available from other image classes, for instance, we could look at the
training data available and use images from classes like mushrooms, dogs,
eyewear, etc. The model could then build up prior knowledge such that, at
inference time, it can quickly acquire task-specific knowledge with only a
handful of training examples. This way, the model first learns parameters from a
training dataset that consists of images from other classes, and then uses those
parameters as prior knowledge to tune them further, based on the limited
training set (in this case, the one with five training examples).

Now the question is, how can the model learn a good initial set of parameters
which can then be easily adapted to the downstream tasks? The answer lies in a

simple training principle, which was initially proposed by Vinyals et. al.[7]:

Train and test conditions must match

The idea is to train a model by showing it only a few examples per class, and
then test it against examples from the same classes that have been held out
from the original dataset, much the way it will be tested when presented with
only a few training examples from novel classes. Each training example, in this
case, comprises pairs of train and test data points called an episode.

Solving the problem

This is a departure from the way that data is set up for conventional supervised
learning. The training data (also called the meta-training data) is composed of
train and test examples, alternately referred to as the support and query set.

The number of classes (N) in the support set defines a task as an N-class
classification task or N-way task, and the number of labeled examples in
each class (k) corresponds to k-shot, making it an N-way, k-shot learning
problem.

Figure 6: Meta-learning data setup, adopted from Optimization as a Model

for Few-Shot Learning (PDF)

https://openreview.net/pdf?id=rJY0-Kcll

In this case, we have a 5-way, 1-shot learning problem.

Similar to conventional supervised learning, which sets aside validation and test
datasets for hyper-parameter tuning and generalization, meta-learning also has
meta-validation and meta-test sets. These are organized in a similar fashion as
the meta-training dataset in episodes, each with support and query sets; the
only difference is that the class categories are split into meta-training,
validation, and test datasets, such that the classes do not overlap.

Meta-learning: learning to learn
A meta-learning model should be trained on a variety of tasks, and then
optimized further for novel tasks. A task, in this case, is basically a supervised
learning problem (like image classification or regression). The idea is to extract
prior information from a set of tasks that allows efficient learning on new tasks.
For our image classification problem, the ideal set-up would include many
classes, with at least a few examples for each. These can then be used as a
meta-training set to extract prior information, such that when a new task like the
one in the Figure(4) above comes in, the model can perform it more efficiently.

At a high level, the meta-learning process has two phases: meta-learning and
adaptation. In the meta-learning phase, the model learns an initial set of
parameters slowly across tasks; during the adaptation phase, it focuses on
quick acquisition of knowledge to learn task-specific parameters. Since the
learning happens at two levels, meta-learning is also known as learning to learn.
[8]

A variety of approaches have been proposed that vary based on how the
adaptation portion of the training process performs. These can broadly be
classified into three categories: “black-box” or model-based, metric-based, and
optimization-based approaches.

“Black-box” (or model-based) approaches simply train an entire neural network,
given some training examples in the support set and an initial set of meta-
parameters, and then make predictions on the query set. They approach the
problem as supervised learning, although there are approaches that try to

eliminate the need to learn an entire network.[9]

Metric-based approaches usually employ non-parametric techniques (for
example, k-nearest neighbors) for learning. The core idea is to learn a feature

representation (e.g., learning an embedding network that transforms raw inputs
into a representation which allows similarity comparison between the support
set and the query set). Thus, performance depends on the chosen similarity
metric (like cosine similarity or euclidean distance).

Finally, optimization-based approaches treat the adaptation part of the process
as an optimization problem. This article mainly focuses on one of the well-
known approaches in this category, but before we delve into it, let’s look at how
optimization-based learning actually works.

During training, we iterate over datasets of episodes. In meta-training, we start
with the first episode, and the meta-learner takes the training (support) set and
produces a learner (or a model) that will take as input the test (query) set and
make predictions on it. The meta-learning objective is based on a loss (for
example, cross-entropy) that is derived from the test or query set examples and
will backpropagate through these errors. The parameters of the meta-learner
(that is, meta-parameters) are then updated based on these errors to optimize

the loss.[10]

In the next step, we look at the next episode, train on the support set
examples, make predictions on the query set, update meta-parameters, and
repeat. In attempting to learn a meta-learner this way, we are trying to solve the
problem of generalization. The examples in the test (or query) set are not part
of the training—so, in a way, the meta-learner is learning to extrapolate.

Model Agnostic Meta-learning
(MAML)
Now that we have a general idea of how meta-learning works, the rest of this

article mainly focuses on MAML[11], which is perhaps one of the best known
optimization-based approaches. While there have been more recent extensions
to it, MAML continues to serve as a foundational approach.

The goal of meta-learning is to help the model quickly adapt to or learn on a
new task, based on only a few examples. In order for that to happen, the meta-
learning process has to help the model learn from a large number of tasks. For
example, for the image classification problem we’ve considered, the new task is
the one shown in Figure(4), while the large number of tasks could be images
from other classes that are utilized for building a meta-training dataset, as
shown in Figure(6).

Figure 7: Learning to learn

The key idea in MAML is to establish initial model parameters in the meta-
training phase that maximize its performance on the new task. This is done by
updating the initial model parameters with a few gradient steps on the new task.
Training the model parameters in this way allows the model to learn an internal
feature representation that is broadly suitable for many tasks—the intuition
being that learning an initialization that is good enough, and then fine-tuning the
model slightly, will produce good results.

Imagine we have two neural network models that share the same model

architecture:[12] learner for the meta-learning process and adapter for the
adaptation process. Since we have two models to train, we also have two
different learning rates associated with them. The MAML algorithm can then be
summarized in the following steps:

Step 1: Randomly initialize the learner
Step 2: Repeat the entire process from Step (2.a) to Step (3) for all the
episodes of the meta-training dataset (or for a certain number of
epochs) until the learner converges to a good set of “meta-
parameters.”

Step 2.a: Sample a batch of episodes from the meta-training
dataset
Step 2.b: Initialize the adapter with the learner’s parameters
Step 2.c: While number of inner training steps is not equal to zero

Step 2.c.1: Train the adapter based on the support set(s) of the
batch, compute the loss and the gradients, and update the
adapter’s parameters

Step 2.d: Use the updated parameters of the adapter to compute
the “meta-loss” based on the query set(s) of the batch

Step 3: Compute the “meta-gradients”, followed by the “meta-
parameters” based on the “meta-loss,” and update the learner’s
parameters

The “meta-loss” indicates how well the model is performing on the task. In
effect, the learner is being fine-tuned using a gradient-based approach for every

new task in the batch of episodes. Further, the learner acts as initialization
parameters for the adapter so that it can perform task-specific learning.

During inference, we actually use the meta-trained model (learner) to predict on
the meta-test set, except this time—although the meta-trained model
undergoes additional gradient steps to help classify the query set examples—
the learner parameters aren’t updated.

As long as the model is trained using gradient descent, the approach does not
place any constraints on the model architecture or the loss function. This
characteristic makes it applicable to a wide variety of problems, including
regression, classification, and reinforcement learning. Further, since the
approach actually undergoes a few gradient steps for a novel task, it allows the
model to perform better on out-of-sample data, and hence achieves better
generalization. This behavior can be attributed to the central assumption of
meta-learning: that the tasks are inherently related and thus data-driven
inductive bias can be leveraged to achieve better generalization.

Figure 8: MAML

The MAML paper explores the approach for multiple problems: regression,
classification, and reinforcement learning. To gain a better understanding of the
algorithm and investigate whether MAML really learns to adapt to novel tasks,
we tested the technique on the Quick, Draw! dataset. All of the experiments
were performed using PyTorch (which allows for automatic differentiation of the
gradient updates), along with the torch-meta library. The torch-meta library
provides data loaders for few-shot learning, and extends PyTorch’s Module
class to simplify the inclusion of additional parameters for different modules for
meta-learning. This functionality allows one to backpropagate through an
update of parameters, which is a key ingredient for gradient-based meta-
learning. While torch-meta provides an excellent structure for creating
reproducible benchmarks, it will be interesting to see its integration with other
meta-learning approaches that handle datasets differently, and its flexibility in
adopting them in the future. For our purposes, we extended the torch-meta
code to accommodate the Quick, Draw! data set-up. The experiment code is
available here.

Dataset
The Quick, Draw! dataset consists of 50 million doodles (hand-drawn figures)
across 345 categories. We conducted two experiments: in one, we randomly
selected 100 images; in the other, we randomly selected 20 images per class.
The 345 classes were randomly split into meta-train/validation/test datasets as
207/69/69. The training and evaluation was performed on the meta-training set.
The meta-validation set was mostly used for hyper-parameter tuning, and the
meta-test set measured the generalization to new tasks.

Set-up
We evaluated the MAML approach on 5-way 1/5/10-shot and 10-way 1/5/10-
shot settings for the Quick, Draw! dataset. An experiment on each of the 100-
sample and 20-sample datasets consisted of training for 50 epochs with each

Experiment

https://arxiv.org/pdf/1703.03400.pdf
https://quickdraw.withgoogle.com/data
https://github.com/tristandeleu/pytorch-meta
https://github.com/fastforwardlabs/learning-to-learn

epoch consisting of 100 batches of tasks, where a task’s batch size was 25 for
100-sample and 10 for 20-sample datasets. At the end of an epoch, we
evaluated the model performance on the meta-validation dataset. At the end of
50 epochs, we evaluated the model on the meta-test dataset.

In terms of model architecture, we used a network with 4 convolution layers—
with size 20 channels in the intermediate representations, each including batch
normalization and ReLU nonlinearities, followed by a linear layer. For all models,
the loss function was the cross-entropy error between the predicted and true
labels.

The models for the 100-sample dataset were trained using an SGD optimizer
with a learning rate of 0.001, an inner learning rate of 0.01 for the adaptation
process, a step size (that is, number of gradient steps) of 5, and a task batch
size of 25. All the hyper-parameters were the same for all the models, for a
consistent comparison. While the models for the 20-sample dataset were
trained with a slightly lower learning rate of 0.0005, an inner learning rate of
0.005, a task batch size of 10 along with the rest of the parameters were same
as the 100-sample dataset.

Figure 9: 5-way, 1-shot episode example

Results
The figures below illustrate how MAML performs on the 100- and 20-item
randomly sampled versions of the Quick, Draw! dataset, for a 5-way or a 10-way
classification few-shot problem, with a varying number of examples per class.
As expected, the model performance on the both the meta-validation and
meta-test set is better when the model is trained on a 100-sample subset
instead of using just 20 samples. Further, 5-way classification yields better
results than 10-way classification— which is to be expected, given that 5-way
classification is an easier task than 10-way classification. Also, as the number of
shots/examples per class increase, we see better performance during validation
and test time. The validation results for 5-way 1/5/10-shot learning based on
20 samples look promising too. In the 10-way learning based on 20-samples we
see some overfitting after a few epochs and may want to restrain the model by
stopping early. That said, we have left them as is for easy comparison with the
rest of the experiment results.

Figure 10. 5-way, 1/5/10-shot results based on 100 random sampled images

Figure 11. 10-way, 1/5/10-shot results based on 100 random sampled

images

Figure 12. 5-way, 1/5/10-shot results based on 20 random sampled images

Our results demonstrate that the MAML approach is beneficial for learning with
only a few examples. In the 100 randomly sampled images scenario, the 5-way
classification task gives an accuracy of around 68% with just one example. The
model performance is even better with additional examples; for both 5
examples and 10 examples per class, accuracy shoots over 80%. As expected,
for the 10-way classification task, the results are lower (by around 10-15%) but
still promising.

For the 20-random sample scenario and a more realistic one from a meta-
learning point of view, the 5-way results are still pretty good ~60% accuracy
with just one example. The 10-way classification results are lower similar to the
100-sample dataset. Nonetheless, overall the results are promising even with

Figure 13. 10-way, 1/5/10-shot results based on 20 random sampled images

Figure 14. Meta-test dataset results

minimal tuning and suggests the applicability of the approach for fast adaptive
learning.

The MAML approach fine-tunes its model using gradient descent each time for
a new task. This requires it to backpropagate the meta-loss through the model’s
gradients, which involves computing derivatives of derivatives, i.e., second
derivatives. While the gradient descent at test time helps it extrapolate better, it
does have its costs.

Backpropagating through many inner steps can be compute and memory
intensive. With only a few gradient steps, it might be a less time-consuming
endeavor, but it may not be the best solution for scenarios that require a higher
number of gradient steps at test time. That said, the authors of the MAML paper
also propose a first-order approximation that eliminates the need to compute
the second derivatives, with a comparable performance. Another closely related

work is OpenAI’s Reptile;[13] it builds on first-order MAML, but doesn’t need to
split the episode into support and query sets, making it a natural choice in
certain settings. However, experiments suggest that approaches to reduce
computation time while not sacrificing generalization performance are still in the

works.[14]

As we saw previously, learning occurs in two stages: gradual learning is
performed across tasks, and rapid learning is performed within tasks. This
requires two learning rates, which introduces difficulty in choosing hyper-
parameters that would help achieve training stability. The two learning rates
introduce hyper-parameter grid search computation, and hence, time and
resources. It is also important to select the learning rate for the adaptation
process carefully because it is learning over only a few examples. In that regard,
some solutions or extensions to MAML have been developed to reduce the

need for grid search or hyper-parameter tuning. For example, Alpha MAML[15]

eliminates the need to tune both the learning rates by automatically updating
them as needed. MAML++, on the other hand, proposes updating the query set
loss (meta-loss) for every training step in the adaptation process, which can

Challenges and ways to
overcome

https://arxiv.org/pdf/1703.03400.pdf

help get rid of the training instabilities. In addition, they suggest various other
steps to make it computationally efficient.

Research that performs neural architecture search for gradient-based meta-

learners[16] also suggests that approaches like MAML and its extensions tend to
perform better with deeper neural architectures for few-shot classification
tasks. While note-worthy, it nevertheless should be explored further with more
experiments.

Meta-learning alleviates the need to collect vast amounts of data, and hence is
applicable where supervised training examples are difficult (or even impossible)
to acquire, given safety, security and privacy issues. If training efficient deep
learning models is possible in such a scenario with just a handful of examples, it
will benefit machine learning practitioners and its overall adoption.

Recent research[17] in fairness addresses the question of how a practitioner
who has access to only a few labeled examples can successfully train a fair
machine learning model. The paper suggests that one can do so by extending
the MAML algorithm to Fair-MAML, such that each task includes a fairness
regularization term in the task losses and a fairness hyperparameter—gamma—in
hopes of encouraging MAML to learn generalizable internal representations that
strike a desirable balance between accuracy and fairness.

Ethics

Meta-learning is appealing; its ability to learn from a few examples makes it
particularly attractive. A gradient-based approach like MAML puts us in familiar
territory: using pre-trained models and fine-tuning them. The MAML algorithm is
simple, and its ability to perform a few gradient steps at inference time allows it
to generalize quickly to unseen classes. The approach is applicable to a variety
of problems—including regression, classification, and reinforcement learning—
and can be combined with any model architecture, as long as the model is
trained based on gradient descent.

While there are many areas of future research on meta-learning, here is our
perspective on what could make it more adoptable in real world scenarios, as
well as which areas could benefit from future work.

Some of the success of meta-learning in solving few-shot learning problems
can be attributed to the way the data is set up for training and testing: episodes.
In general, N-way, k-shot learning is much easier if you train the model to do N-
way, k-shot learning. For our experiments, as well as the various approaches in
this area, how we defined an episode was pretty arbitrary. For instance, we
made an assumption that during meta-test time we would face a 5-way or a 10-
way problem, with each class having either a single example or five examples.
Will a real world inference scenario always match this expectation? Likely not. It
could be more valuable to find an approach that can relax this assumption.

Another area worth exploring is whether it is possible to train on heterogeneous
datasets. For example, can we train a meta-learning model to classify a fork
based on doodles, photos of forks at restaurants, or images from product
catalogs (basically, forks from different training domains or environments)? How
should we define the meta-training set and episodes in such a scenario?
Should we consider classes from all the environments to define the meta-
train/validation/test datasets? A recent paper that applies meta-learning for

few-shot land cover classification,[18] in which the class images vary by regions
(urban areas, continents, or vegetation) suggests using classes from one
environment for the support set and classes from another environment for the

Moving forward

query set. The authors find that meta-learning (MAML, actually) can benefit
Earth Sciences, especially when there is a high degree of diversity in the data.

In real world scenarios, it’s often likely that we’ll have lots of unlabeled data. In
such circumstances, is it possible to employ meta-learning algorithms to

leverage these unlabeled datasets? The authors of one research paper[19]

propose a solution to this by augmenting a metric-based meta-learning
approach to leverage unlabeled examples. In addition to the support set and
the query set, the episode includes an unlabeled set. This unlabeled set may or
may not contain examples from the support set classes. The idea is to use the
labeled examples from the support set and the unlabeled examples within each
episode to generalize for a good performance on the corresponding query set.
Experiments show an improvement in model performance in some cases.

Another interesting idea that’s being explored is at the crossroads of active

learning[20] and meta-learning. The field of active learning takes advantage of
machine learning in collaboration with humans, selecting examples from vast
pools of unlabeled data and requesting labels for them. At times, these
examples are chosen based on how uncertain the model is about its predicted
label, or by how “different” it is than the rest, etc.—with the ultimate aim to
improve model performance. Since there are fewer labeled training examples to
begin with, one could employ meta-learning approaches in such a scenario; for
instance, a metric-based approach has been discussed for batch-mode active

learning.[21] (It is also possible to learn a label acquisition strategy instead.)[22]

Over the coming years, we will see additional approaches that will make meta-
learning even more adoptable in real world scenarios; whether it’s using meta-
learning successfully on heterogeneous data or leveraging unlabeled data,
these approaches will make learning and generalizing with fewer labeled
examples possible. As previously mentioned, we will continue to see research
that simplifies both the training and inference process. These advances will
allow machine learning practitioners to develop even more new ways of
designing machine learning systems.

Author’s note
Thank you so much for reading this article. This work has been deeply
influenced by the work of Professor Chelsea Finn. Also, the torch-meta library,

https://ai.stanford.edu/~cbfinn/

along with its demo examples, made it easier to understand and showcase
meta-learning.

1. Learning to Model the Tail (PDF) ↩

2. Meta-learning in Neural Networks: A Survey ↩

3. Matching Networks for One-Shot Learning ↩

4. Meta-Learning for Low-Resource Neural Machine Translation ↩

5. Learning Fast Adaptation on Cross-Accented Speech Recognition ↩

6. Model Agnostic Meta-learning for Fast Adaptation of Deep Networks (PDF)
↩

7. Matching Networks for One-Shot Learning ↩

8. Thrun S., Pratt L. (eds). Learning to Learn. Springer, Boston, MA. 1998. ↩

9. One-shot Learning with Memory-Augmented Neural Networks ↩

10. Note that this differs from a conventional supervised learning set up, in
which the objective is based on a loss derived only from the training set,
and, of course, there is no support or query set! ↩

11. Model Agnostic Meta-learning for Fast Adaptation of Deep Networks (PDF)
↩

12. While it is possible to have two duplicate models that can share parameter
tensors in popular deep learning frameworks like PyTorch, libraries like
torch-meta have extended the existing torch modules to allow storing
additional/new parameters. ↩

13. On First-Order Meta-Learning Algorithms ↩

14. How to train your MAML ↩

15. Alpha MAML: Adaptive Model Agnostic Meta Learning ↩

16. Auto-Meta: Automated Gradient Based Meta Learner Search ↩

https://papers.nips.cc/paper/7278-learning-to-model-the-tail.pdf
https://arxiv.org/abs/1606.04080
https://link.springer.com/chapter/10.1007/978-1-4615-5529-2_1
https://link.springer.com/chapter/10.1007/978-1-4615-5529-2_1
https://arxiv.org/pdf/1703.03400.pdf
https://github.com/tristandeleu/pytorch-meta
https://arxiv.org/pdf/1803.02999.pdf
https://arxiv.org/pdf/1810.09502.pdf
https://arxiv.org/abs/1905.07435
https://arxiv.org/abs/1806.06927

17. Fairness warnings and fair-MAML: learning fairly with minimal data ↩

18. Meta-learning for Few-shot Land Cover Classification ↩

19. Meta-learning for semi-supervised few-shot classification ↩

20. A Guide to Learning with Limited Labeled Data ↩

21. Meta-learning for Batch Mode Active Learning (PDF) ↩

22. Meta-Learning Transferable Active Learning Policies by Deep Reinforcement
Learning ↩

https://dl.acm.org/doi/abs/10.1145/3351095.3372839
https://arxiv.org/pdf/2004.13390.pdf
https://arxiv.org/pdf/1803.00676.pdf
https://blog.cloudera.com/a-guide-to-learning-with-limited-labeled-data/
https://openreview.net/pdf?id=r1PsGFJPz
https://arxiv.org/abs/1806.04798

